SUBJECT: PHYSICS	PO, PSO and COs
Program Outcomes	The Program outcome for the 3-year B. Sc. Physics is the
	following, in which the students will:
	PO1: Inculcate a solid understanding of core physical principle and
	fundamental aspects of physical phenomena in various fields such as
	Mechanics, Electromagnetism, Thermodynamics, Quantum Physics
	and Statistical methods etc.
	PO2: Develop analytical and problem-solving skills to formulate and
	solve complicated core subject problems using mathematical and
	computational physics.
	PO3: Learn Hands-on experiments and Lab set-up skills to
	independently run experiments and analyze the data.
	PO4: Learn data interpretation and evaluation of experimental results
	within the specific allowed error bars.
	PO5: Learn and develop presentation skills and debate about the
	learned phenomena from laboratory experiments and classroom
	understanding of theory.
	PO6 : Develop research ability through research projects.
Program specific	Through this 3-year Bachelors degree in Physics program the students
outcomes (PSOs)	should be able to:
	PSO1: Apply fundamental principles of physics to solve complex
	problems in various domains such as mechanics, electromagnetism, and
	thermodynamics.
	PSO2: Utilize mathematical tools and computational techniques to model
	physical systems and analyze experimental data.
	PSO3: Demonstrate proficiency in conducting laboratory experiments,
	including the proper use of instruments and adherence to scientific
	methods.
	PSO4: Integrate theoretical knowledge with practical applications to
	develop innovative solutions and approaches in both academic and
	industrial contexts.
	PSO5: Communicate scientific findings effectively through written

	reports, oral presentations, and collaborative projects, adhering to
	academic and professional standards.
	PSO6: Evaluate emerging technologies and research trends in physics,
	contributing to advancements in science and engineering fields.
Course outcomes:	
DSC1: Mathematical	CO1: Plot and analyse functions, understanding and identifying
Physics-I	continuous and differentiable functions, and represent curves graphically.
	CO2: Apply approximation techniques using Taylor and binomial series
	for function expansion and approximation in practical problems.
	CO3: Solve first-order differential equations using integrating factors and
	second-order homogeneous differential equations with constant
	coefficients, including applications of the Wronskian and understanding
	the general solution.
	CO4: Evaluate initial value problems by understanding the statement and
	implications of the existence and uniqueness theorem.
	CO5: Analyze vector algebra concepts such as scalar and vector products,
	scalar triple products, and their interpretations in terms of area and
	volume.
	CO6: Derive and apply orthogonal curvilinear coordinates, and compute
	gradient, divergence, curl, and Laplacian in Cartesian, spherical, and
	cylindrical coordinate systems.
	CO7: Understand the Dirac delta function, including its definition,
	representation as limits of Gaussian and rectangular functions, and its
	properties.
	CO8: Compute directional and normal derivatives, and apply vector
	differentiation techniques to find gradients, divergences, and curls,
	understanding their geometric interpretations.
	CO9: Evaluate vector integrals, including line, surface, and volume
	integrals, and apply integral theorems such as Gauss' divergence theorem,
	Green's theorem, and Stokes' theorem to various problems
DSC-2 Mechanics	CO1: Analyse the centre of mass and its motion, and apply concepts of
	angular momentum and its conservation to particles and systems of

	particles, including the moment of inertia and rotational kinetic energy.
	CO2: Calculate the moment of inertia for various bodies using
	_
	perpendicular and parallel axis theorems and Routh's rule, and apply
	Euler's equations of rigid body motion to problems involving both
	translation and rotation.
	CO3: Understand non-inertial reference frames and fictitious forces,
	including centrifugal and Coriolis forces, and apply these concepts to
	rotating coordinate systems.
	CO4: Apply principles of elasticity to relate elastic constants, analyze
	twisting torques on cylinders or wires, and determine bending moments
	and flexural rigidity in beams, including cantilever configurations.
	CO5: Study fluid motion and kinematics, including Poiseuille's equation
	for flow through capillary tubes, and analyze surface tension and viscosity
	effects.
	CO6: Compute gravitational potential energy, fields, and forces for
	spherical bodies, solve the two-body problem, and apply Kepler's laws to
	planetary motion, including the concepts of geosynchronous orbits and
	GPS systems.
	CO7: Investigate simple harmonic oscillations, including the calculation
	of kinetic, potential, and total energy, and analyze damped and forced
	oscillations, resonance, and quality factors in various oscillatory systems.
	CO8: Explain the principles of Special Theory of Relativity, including
	Lorentz transformations, time dilation, Lorentz contraction, and
	relativistic effects on velocity, energy, and momentum.
	CO9: Apply relativistic concepts to analyze phenomena such as mass-
	energy equivalence, relativistic Doppler effect, and transformations in
	energy and momentum.
DSC-3 Electricity and	CO1: Apply Gauss's Law to calculate electric fields for various charge
Magnetism	distributions, and understand the concepts of electric potential, potential
	of a dipole, and electrostatic energy of charged systems.
	CO2: Analyze magnetic fields and forces using Biot-Savart's Law and
	Ampere's Circuital Law, including the behavior of current loops as
	magnetic dipoles and the application of these concepts to devices such as

			solenoids and toroids.
			CO3: Explain the dielectric properties of materials, including
			polarization, susceptibility, and capacitance of capacitors with dielectric
			materials, as well as the magnetic properties of matter, including
			magnetization, susceptibility, and ferromagnetism.
			CO4: Solve AC circuit problems using Kirchhoff's laws, complex
			reactance, impedance, and network theorems, and analyze transient
			currents in RC and LR circuits, including resonance, power dissipation,
			and quality factors in series and parallel LCR circuits.
Dag (
DSC-4	Wave	and	CO1: Apply Fermat's principle to analyze reflection and refraction at
Optics			plane interfaces, use matrix formulation for geometrical optics, and
			understand cardinal points and planes in optical systems.
			CO2: Understand the electromagnetic nature of light and apply Huygens'
			principle to describe wave fronts, as well as analyze temporal and spatial
			coherence in wave optics.
			CO3: Analyze wave motion including plane and spherical waves,
			longitudinal and transverse waves, and apply superposition principles to
			study harmonic oscillations and Lissajous figures.
			CO4: Explain and apply principles of interference and diffraction,
			including the Young's double slit experiment, interference in thin films,
			and Fraunhofer and Fresnel diffraction patterns, as well as the resolving
			power of telescopes and gratings
DSC-5	Wave	and	CO1: Derive Fourier series expansions for periodic functions, apply
Optics			orthogonality principles, and compute Fourier coefficients for both sine
			and cosine series, including complex representations and applications to
			non-periodic functions.
			CO2: Apply the Frobenius method to solve differential equations with
			singular points and analyze special functions such as Legendre and
			Hermite polynomials, including their generating functions, orthogonality,
			and applications.
			CO3: Utilize recurrence relations and series expansions for Legendre and

	Hermite polynomials, and solve problems involving associated Legendre
	polynomials and spherical harmonics, including applications to physical
	problems.
	CO4: Solve partial differential equations using separation of variables,
	applying techniques to Laplace's equation and the wave equation for
	problems with rectangular, cylindrical, and spherical symmetries,
	including the analysis of conducting and dielectric spheres in external
	electric fields.
DSC-6 Thermal	CO1: Explain the fundamental laws of thermodynamics, including the
Physics	Zeroth, First, and Second Laws, and apply these concepts to analyze
	reversible and irreversible processes, Carnot's theorem, and the concept of
	entropy in both reversible and irreversible contexts.
	CO2: Apply thermodynamic potentials such as internal energy, enthalpy,
	Helmholtz free energy, and Gibbs free energy to various thermodynamic
	problems, including phase transitions and the effect of surface films and
	temperature on surface tension.
	CO3: Utilize kinetic theory to analyze the distribution of velocities in
	gases, including Maxwell-Boltzmann distribution, mean free path, and the
	law of equipartition of energy, and apply this understanding to transport
	phenomena such as viscosity, thermal conductivity, and diffusion.
	CO4: Analyze the behavior of real gases using the Virial equation and
	Van der Waals equation, including deviations from ideal gas behavior,
	critical constants, and the Joule-Thomson effect, and apply these concepts
	to experimental results and real-world applications.
DSC-7	CO1: Analyze the operation and characteristics of semiconductor diodes,
Analog Systems and	including P-N junction formation, barrier potential, and the current flow
Applications	mechanisms in forward and reverse bias conditions, as well as
	applications in rectifiers, Zener diodes, LEDs, photo diodes, and solar
	cells.
	CO2: Understand the structure and behavior of Bipolar Junction
	Transistors (BJTs), including n-p-n and p-n-p configurations, current

	gains, load line analysis, and biasing techniques, as well as analyze their
	operation in active, cut-off, and saturation regions.
	CO3: Design and evaluate transistor amplifiers, including single-stage
	common-emitter (CE) amplifiers using the hybrid model, and understand
	their classification (class A, B, C) and the concept of push-pull amplifiers.
	Analyze coupled amplifiers and their frequency responses.
	CO4: Apply operational amplifier (Op-Amp) concepts to design and
	analyze various analog circuits, including inverting and non-inverting
	amplifiers, adders, subtractors, differentiators, integrators, log amplifiers,
	and Wein bridge oscillators, while understanding characteristics such as
	CMRR, slew rate, and virtual ground.
DSC-8 Mathematical	CO1: Analyze complex functions using Cauchy-Riemann conditions to
Physics 3	determine analyticity, and apply concepts of singularities, residues, and
	the residue theorem to evaluate integrals and solve problems involving
	analytic functions.
	CO2: Apply Fourier transforms to various functions, including
	trigonometric, Gaussian, and finite wave trains, and use the Fourier
	transform to represent the Dirac delta function and solve differential
	equations related to wave and heat flow problems.
	CO3: Utilize properties of Fourier transforms, including the convolution
	theorem and its application to three-dimensional transforms, and analyze
	their role in solving differential equations and other mathematical
	problems.
	CO4: Apply Laplace transforms to solve ordinary differential equations,
	including those related to damped harmonic oscillators and electrical
	circuits, and use properties of Laplace transforms for analyzing and
	transforming functions, including unit step and Dirac delta functions.
DSC-9 Elements of	CO1: Analyze atomic spectra using classical and quantum models,
Modern Physics	including the limitations of the Rutherford model and the Bohr model,
	and explain the corrections for the finite mass of the nucleus and discrete
	energy exchanges by atoms.

	CO2: Understand and apply concepts of wave packets, including phase
	and group velocities, Gaussian wave packets, and the time development
	and spatial localization of wave packets, as well as wave-particle duality
	and complementarity.
	CO3: Explain and utilize the Heisenberg Uncertainty Principle in various
	contexts, including gamma-ray microscope thought experiments and
	electron diffraction, and estimate ground state energies for systems such
	as the harmonic oscillator and hydrogen atom.
	CO4: Describe nuclear physics concepts including the structure and size
	of atomic nuclei, nuclear forces, radioactivity, decay processes, and the
	principles of nuclear fission and fusion, and discuss applications such as
	nuclear reactors and stellar energy production.
DSC-10	CO1: Describe the fundamental concepts of integrated circuits (ICs),
Digital systems and	including the differences between active and passive components, the
applications	advantages and drawbacks of ICs, and the various scales of integration
	(SSI, MSI, LSI, VLSI) along with examples of linear and digital ICs.
	CO2: Understand digital circuit design by explaining the difference
	between analog and digital circuits, binary number systems, and the use of
	basic logic gates (AND, OR, NOT, NAND, NOR, XOR, XNOR) in
	constructing and simplifying logic circuits, including applications such as
	parity checkers.
	CO3: Analyze and simplify logic circuits using Boolean algebra,
	including De Morgan's Theorems, fundamental products, and methods for
	converting truth tables to logic circuits using Sum of Products and
	Karnaugh Maps.
	CO4: Apply knowledge of data processing circuits, including
	multiplexers, de-multiplexers, decoders, encoders, and arithmetic circuits
	for binary operations (addition, subtraction) and timing applications (IC
	555), as well as understand basic computer organization concepts such as
	memory organization, interfacing, and shift registers and counters.
DSC-11	CO1: Derive and solve the time-dependent Schrödinger equation for

Quantum Mechanics	different systems, analyze the properties of wave functions, and apply the
and Application	principles of normalization, linearity, and superposition to describe wave
	packets and their evolution over time.
	CO2: Understand and utilize operators in quantum mechanics,
	including position, momentum, angular momentum, and energy operators.
	Apply commutator algebra, Hermitian operators, and expectation values
	to analyse physical observables and their uncertainties.
	CO3: Solve the time-independent Schrödinger equation in one, two, and
	three dimensions for various potential models, including the square well
	potential, harmonic oscillator, and infinitely rigid box. Apply these
	solutions to study quantum mechanical phenomena such as bound states,
	energy eigenfunctions, and tunnelling.
	CO4: Explore the interaction of atoms with electric and magnetic fields,
	including the effects of electron spin, the Stern-Gerlach experiment, and
	the Zeeman effect. Analyse the implications of L-S and J-J coupling, as
	well as the normal and anomalous Zeeman effects on atomic spectra.
DSC-12 Solid State	CO1: Analyze and describe the crystal structures of solids, including the
DSC-12 Solid State Physics	CO1: Analyze and describe the crystal structures of solids, including the concepts of lattice translation vectors, unit cells, Miller indices, and
	concepts of lattice translation vectors, unit cells, Miller indices, and
	concepts of lattice translation vectors, unit cells, Miller indices, and reciprocal lattices. Apply Bragg's law to understand X-ray diffraction and
	concepts of lattice translation vectors, unit cells, Miller indices, and reciprocal lattices. Apply Bragg's law to understand X-ray diffraction and the factors affecting atomic and geometrical contributions to diffraction
	concepts of lattice translation vectors, unit cells, Miller indices, and reciprocal lattices. Apply Bragg's law to understand X-ray diffraction and the factors affecting atomic and geometrical contributions to diffraction patterns.
	concepts of lattice translation vectors, unit cells, Miller indices, and reciprocal lattices. Apply Bragg's law to understand X-ray diffraction and the factors affecting atomic and geometrical contributions to diffraction patterns. CO2: Understand and explain the basic principles of lattice vibrations
	concepts of lattice translation vectors, unit cells, Miller indices, and reciprocal lattices. Apply Bragg's law to understand X-ray diffraction and the factors affecting atomic and geometrical contributions to diffraction patterns. CO2: Understand and explain the basic principles of lattice vibrations and phonons in solids, including acoustic and optical phonons, and their
	concepts of lattice translation vectors, unit cells, Miller indices, and reciprocal lattices. Apply Bragg's law to understand X-ray diffraction and the factors affecting atomic and geometrical contributions to diffraction patterns. CO2: Understand and explain the basic principles of lattice vibrations and phonons in solids, including acoustic and optical phonons, and their impact on thermal properties. Compare and apply Einstein and Debye
	concepts of lattice translation vectors, unit cells, Miller indices, and reciprocal lattices. Apply Bragg's law to understand X-ray diffraction and the factors affecting atomic and geometrical contributions to diffraction patterns. CO2: Understand and explain the basic principles of lattice vibrations and phonons in solids, including acoustic and optical phonons, and their impact on thermal properties. Compare and apply Einstein and Debye theories to the specific heat of solids and discuss the implications of the T ³
	concepts of lattice translation vectors, unit cells, Miller indices, and reciprocal lattices. Apply Bragg's law to understand X-ray diffraction and the factors affecting atomic and geometrical contributions to diffraction patterns. CO2: Understand and explain the basic principles of lattice vibrations and phonons in solids, including acoustic and optical phonons, and their impact on thermal properties. Compare and apply Einstein and Debye theories to the specific heat of solids and discuss the implications of the T ³ law.
	concepts of lattice translation vectors, unit cells, Miller indices, and reciprocal lattices. Apply Bragg's law to understand X-ray diffraction and the factors affecting atomic and geometrical contributions to diffraction patterns. CO2: Understand and explain the basic principles of lattice vibrations and phonons in solids, including acoustic and optical phonons, and their impact on thermal properties. Compare and apply Einstein and Debye theories to the specific heat of solids and discuss the implications of the T ³ law. CO3: Explore and characterize the magnetic and dielectric properties of
	concepts of lattice translation vectors, unit cells, Miller indices, and reciprocal lattices. Apply Bragg's law to understand X-ray diffraction and the factors affecting atomic and geometrical contributions to diffraction patterns. CO2: Understand and explain the basic principles of lattice vibrations and phonons in solids, including acoustic and optical phonons, and their impact on thermal properties. Compare and apply Einstein and Debye theories to the specific heat of solids and discuss the implications of the T ³ law. CO3: Explore and characterize the magnetic and dielectric properties of materials. Analyze different types of magnetic materials (diamagnetic,
	concepts of lattice translation vectors, unit cells, Miller indices, and reciprocal lattices. Apply Bragg's law to understand X-ray diffraction and the factors affecting atomic and geometrical contributions to diffraction patterns. CO2: Understand and explain the basic principles of lattice vibrations and phonons in solids, including acoustic and optical phonons, and their impact on thermal properties. Compare and apply Einstein and Debye theories to the specific heat of solids and discuss the implications of the T ³ law. CO3: Explore and characterize the magnetic and dielectric properties of materials. Analyze different types of magnetic materials (diamagnetic, paramagnetic, ferrimagnetic, and ferromagnetic) and their behaviors,

	Einstein's coefficients, optical pumping, and population inversion. Differentiate between three-level and four-level laser systems and describe specific examples such as Ruby and He-Ne lasers. Additionally, understand the basic concepts of band theory, including the Kronig- Penney model, and the properties of conductors, semiconductors, and insulators, as well as the phenomenon of superconductivity and its experimental results, critical temperatures, and types of superconductors.
DSC-13	CO1: Comprehend and apply Maxwell's equations, including the
Electromagnetic	displacement current, vector and scalar potentials, and gauge
Theory	transformations (Lorentz and Coulomb). Analyze boundary conditions at
~	interfaces between different media and solve wave equations to
	understand plane wave propagation in dielectric media. Utilize the
	Poynting theorem to determine electromagnetic energy density and its
	physical implications.
	CO2: Analyze and describe electromagnetic wave propagation in
	unbounded media, including vacuum and isotropic dielectric media.
	Evaluate the transverse nature of plane waves, refractive index, dielectric
	constant, and wave impedance. Understand and compute propagation
	characteristics in conducting media, including relaxation time, skin depth,
	and applications to ionized gases and the ionosphere.
	CO3: Evaluate and explain the behavior of electromagnetic waves in
	bounded media. Apply boundary conditions at plane interfaces between
	different media to understand reflection and refraction of plane waves.
	Utilize Fresnel's formulas for different polarization cases, apply
	Brewster's law, and analyze phenomena such as total internal reflection,
	evanescent waves, and metallic reflection.
	CO4: Understand and interpret the polarization of electromagnetic
	waves, including linear, circular, and elliptical polarization. Explore the
	behavior of light in uniaxial and biaxial crystals, including double
	refraction, and apply Nicol prisms and phase retardation plates (quarter-
	wave and half-wave plates). Investigate optical rotation, Biot's laws,
	Fresnel's theory of optical rotation, and use experimental tools like

		Laurentz's half-shade polarimeter to measure specific rotation.
		Laurentz's han-shade polarmeter to measure specific fotation.
DSC-14	Statistical	CO1: Understand and apply the fundamental concepts of classical
Mechanics		statistical mechanics, including the definitions of macrostates and
		microstates, and the concepts of ensembles (microcanonical, canonical,
		and grand canonical). Analyze the phase space, entropy, thermodynamic
		probability, and the Maxwell-Boltzmann distribution law, and compute
		the partition function for different systems.
		CO2: Analyze and interpret classical statistical properties of ideal gases,
		including classical entropy expressions, the Gibbs paradox, and the
		Sackur-Tetrode equation. Apply the law of equipartition of energy to
		calculate specific heat and understand its limitations. Investigate
		thermodynamic functions for systems with two energy levels and explore
		the concept of negative temperature.
		CO3: Explore and differentiate between quantum statistics for fermions
		and bosons, including Bose-Einstein and Fermi-Dirac distribution
		functions. Analyze Bose-Einstein condensation and deviations from
		Planck's law, and understand the effects of temperature on Fermi-Dirac
		distribution functions. Study the properties of degenerate Fermi gases and
		compute the density of states and Fermi energy.
		CO4: Describe and apply the principles of thermal radiation, including
		blackbody radiation and its temperature dependence. Derive and verify
		Kirchhoff's law, Stefan-Boltzmann law, Wien's displacement law, and
		Rayleigh-Jeans law from Planck's law of blackbody radiation. Analyze
		the implications of these laws for radiation pressure and the ultraviolet
		catastrophe, and understand the experimental verification of Planck's law.
DSE-1	Classical	CO1: Apply the principles of generalized coordinates and velocities to
Dynamics		derive and solve Lagrangian equations of motion using D'Alembert's
		principle. Analyze mechanical systems including simple, compound, and
		double pendulums, a single particle in space, Atwood's machine, dumb-
		bell systems, and linear harmonic oscillators through the Lagrangian
		framework.

	CO2: Utilize Hamilton's principle and the calculus of variations to derive
	Euler-Lagrange equations. Apply Hamiltonian mechanics to solve
	problems such as finding the shortest distance between two points in a
	plane, geodesic problems, minimum surfaces of revolution, and the
	Brachistochrone problem. Analyze the equations of motion and first
	integrals, canonical momenta, Hamilton's equations, and applications to
	central force motion and coupled oscillators, including the motion of
	charged particles in external electric and magnetic fields.
	CO3: Understand and explain the postulates of special relativity,
	including Lorentz transformations and Minkowski space. Analyze
	concepts such as the invariant interval, light cone, and world lines, and
	describe phenomena like time dilation, length contraction, and the twin
	paradox. Derive and apply the mass-energy relation to understand how
	mass varies with velocity.
	CO4: Explore and apply the concept of four-vectors, including space-
	like, time-like, and light-like vectors. Analyze four-velocity, four-
	momentum, and energy-momentum relations, and interpret Doppler
	effects from a four-vector perspective. Understand the concept of four-
	force and conservation of four-momentum, and apply these concepts to
	the two-body decay of an unstable particle.
DSE-2 Nuclear and	CO1: Understand and describe the general properties of atomic nuclei,
Particle Physics	including their constituents (protons and neutrons) and intrinsic properties
	such as mass, radius, charge density, and binding energy. Analyze the
	variation of binding energy with mass number and the main features of
	the binding energy versus mass number curve. Evaluate properties such as
	angular momentum, parity, magnetic moment, electric moments, and
	nuclear excited states.
	CO2: Analyze and explain the processes of radioactive decay, including
	alpha decay, beta decay, and gamma decay. Understand the theory behind
	alpha emission, including the Gamow factor and Geiger-Nuttall law.
	Apply energy kinematics to beta decay processes, including positron
	emission and electron capture, and understand the neutrino hypothesis.

	Develop an elementary understanding of gamma decay and its
	significance.
	CO3: Apply and evaluate nuclear models, including the liquid drop
	model and semi-empirical mass formula. Discuss the significance of
	various terms in the mass formula and conditions for nuclear stability.
	Analyze two-nucleon separation energies and evidence for nuclear shell
	structure, including nuclear magic numbers and basic assumptions of shell
	models.
	CO4: Identify and describe different types of detectors for nuclear
	radiation. Understand the principles of gas detectors, including ionization
	chambers and Geiger-Müller counters, as well as scintillation detectors
	and photomultiplier tubes (PMTs). Explore semiconductor detectors (Si
	and Ge) for charge particle and photon detection, and understand the
	concept of charge carriers and mobility. Develop knowledge of neutron
	detectors and their applications.
	CO5: Explain and apply the principles of particle accelerators, including
	the Van de Graaff generator (Tandem Accelerator), linear accelerators,
	cyclotrons, and synchrotrons. Understand their basic construction and
	operation principles, as well as their applications in particle physics
	research.
	CO6: Understand and analyze the basic features of particle interactions
	and types of particles and their families. Discuss symmetries and
	conservation laws, including energy and momentum, angular momentum,
	parity, baryon number, lepton number, isospin, strangeness, and charm.
	Develop elementary ideas of quarks and gluons and their role in particle
	physics.
DSE-3 Nanomaterials	CO1: Understand and describe the fundamental concepts of nanoscale
and Applications	systems, including length scales in physics, types of nanostructures (1D,
	2D, 3D) such as nanodots, thin films, nanowires, and nanorods. Analyze
	the band structure and density of states of materials at the nanoscale, and
	discuss size effects and quantum confinement in nano systems. Apply the
	Schrödinger equation to model quantum confinement in 3D, 2D, and 1D
	semounger equation to model quantum commentant in 5D, 2D, and 1D

nanostructures, and understand the consequences of these effects on their
properties.

CO2: Explain and apply various synthesis techniques for nanostructured materials. Differentiate between top-down and bottom-up approaches, and describe methods including photolithography, ball milling, gas-phase condensation, vacuum deposition (thermal and e-beam evaporation), pulsed laser deposition, chemical vapor deposition (CVD), sol-gel, electrodeposition, spray pyrolysis, hydrothermal synthesis, colloidal methods, and molecular beam epitaxy (MBE) growth of quantum dots.

CO3: Identify and utilize different characterization techniques for nanostructures. Discuss the principles and applications of X-Ray Diffraction (XRD), Optical Microscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and Scanning Tunneling Microscopy (STM). Understand how these techniques are used to analyze the structure and properties of nanomaterials.

CO4: Explore and evaluate the applications of nanotechnology in various fields. Analyze the use of nanoparticles, quantum dots, nanowires, and thin films in photonic devices such as LEDs and solar cells. Discuss single-electron devices, carbon nanotube-based transistors, and nanomaterial devices including quantum dot heterostructure lasers, optical switching, optical data storage, magnetic quantum wells, magnetic dots for data storage, and the role of Micro Electromechanical Systems (MEMS) and Nano Electromechanical Systems (NEMS) in technology advancements.

DSE-4 Project	CO1 :Learn Hands-on experiments and Lab set-up skills to independently
	run experiments and analyze the data.
	CO2: Learn data interpretation and evaluation of experimental results
	within the specific allowed error bars.
	CO3: Learn and develop presentation skills and debate about the learned
	phenomena from laboratory experiments and classroom understanding of
	theory.

	CO4 : Develop research ability through research projects.
GE-1	CO1: Mechanics and Properties of Matter
	• Understand and apply the concepts of moment of inertia including
	parallel axis and perpendicular axis theorems, and compute the
	moments of inertia for common solid shapes such as spheres and
	cylinders.
	• Analyze gravitational potential and fields due to spherical bodies,
	and solve problems related to gravitational effects at both internal
	and external points.
	• Apply the concepts of elastic constants, surface tension, and
	viscous flow in various physical contexts, including the
	calculation of depression in cantilevers and the use of Poiseuille's
	formula for viscous flow.
	CO2: Oscillations and Waves
	• Describe and analyze simple harmonic motion (SHM), including
	different damping scenarios (under-damped, over-damped, and
	critically damped), and understand the principles of forced
	vibration and resonance.
	• Derive and solve the wave equation for longitudinal and transverse
	waves in elastic media, and analyze the composition of SHM
	through the study of Lissajous figures for various frequency ratios.
	CO3: Thermal Physics
	• Explain the concepts of entropy, the second law of
	thermodynamics, and Carnot's theorem, and calculate efficiencies
	and changes in entropy for reversible and irreversible processes.
	• Apply the differential equations for heat flow and understand
	thermal conductivity, Maxwell's thermodynamic relations, and the
	Clausius-Clapeyron equation.
	• Discuss black-body radiation and apply Planck's radiation formula
	to understand thermal radiation characteristics.
	CO4: Electricity and Magnetism
	• Apply Gauss's law to compute electrostatic fields and solve
	problems involving magnetic induction using Biot-Savart law and

	Ampère's circuital law.
	• Analyze electromagnetic equations, their differential and integral
	forms, and understand the significance of Maxwell's equations.
	• Understand AC circuit behavior, including growth and decay of
	currents, time constants, impedance, power factor, and resonance
	in RL, RC, and LCR circuits.
	• Describe the operation and characteristics of semiconductors,
	including PN-junctions, rectifiers, transistors (PNP and NPN),
	JFET, and their applications in electronic circuits.
GE-II	CO1: Optics-I
	• Understand Monochromatic Aberrations: Explain the types of
	monochromatic aberrations in optical systems and methods for
	their minimization.
	• Analyze Chromatic Aberration: Discuss chromatic aberration,
	its effects, and achromatic combinations used to correct it.
	• Apply Interference and Diffraction Theory: Describe the theory
	of interference and diffraction, including Young's double slit
	experiment, measurement of wavelength using a biprism, and the
	phenomena of Newton's rings and thin film colors.
	• Explore Diffraction: Analyze Fresnel and Fraunhofer diffraction,
	and solve problems involving diffraction by a single slit and plane
	transmission gratings.
	CO2: Optics-II
	• Electromagnetic Nature of Light: Explain the electromagnetic
	nature of light and its implications.
	• Understand Polarization: Differentiate between polarized and
	unpolarized light, and describe polarization by reflection,
	refraction, Brewster's Law, and Malus's Law.
	• Double Refraction: Explain the phenomenon of double refraction
	and the concepts of ordinary and extraordinary rays.
	CO3: Atomic Physics
	Classical Physics and Quantum Theory: Discuss the inadequacy

	of classical physics in explaining atomic phenomena, including
	Rayleigh-Jeans theory and Planck's quantum theory of radiation.
•	Quantum Nature of Light and Matter: Analyze the photoelectric
	effect, Compton effect, and dual nature of radiation. Explain de
	Broglie's hypothesis, matter waves, and wave-particle duality
	including experimental evidence from the Davisson-Germen
	experiment.
•	Bohr's Theory: Explain Bohr's theory of the hydrogen atom.
	including its ability to explain hydrogen spectra, corrections for
	the finite mass of the nucleus, and the correspondence principle.
	Discuss the limitations of Bohr's theory and discrete energy
	exchange in atoms.
CO4	: Quantum Mechanics and Relativity
•	Quantum Mechanics: Understand the Heisenberg Uncertainty
	Principle and solve problems involving the time-dependen
	Schrödinger wave equation in one and three dimensions. Discuss
	the physical interpretation of the wave function, including
	probability density, probability current density, and the equation of
	continuity. Calculate expectation values of observables and apply
	Ehrenfest's theorem. Solve the time-independent Schrödinge
	equation for a particle in a box, and determine energy eigenvalue
	and eigenfunctions.
•	Nuclear Physics: Discuss the properties of the nucleus, including
	charge, size, spin, magnetic moment, mass defect, binding energy
	and nuclear forces. Explain radioactive decay laws, average life
	half-life, and the concepts of nuclear fission and fusion. Describe
	linear accelerators and cyclotrons.
•	Relativity: Explain the limitations of Newtonian relativity, the
	Michelson-Morley experiment, and the postulates of specia
	relativity. Understand Lorentz transformations, length contraction
	time dilation, and the mass-energy relation.